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SUMMARY

The directional control characteristics of the VZ-2 tilt-wing air-
craft have been measured wherein the original, partial-span ailerons
were connected into the aircraft's directional control system to augment
existing yaw control in the hovering configuration. Tests were made to
determine the directional control response and effectiveness of the com-
bined system in various flight conditions.

The results of this work showed that, if the control surfaces (flaps
or ailerons or a combination of both) are of reasonably appropriate size
and location, they can be useful as a supplementary source of yaw control,
and thus permit adequate total yawing moments without prohibitive weilght
or power penalties. The tests suggest need for caution, however, in
regard to roll coupling and control surface effectiveness at high side-
slip angles when & large portion of the yaw control 1s obtained from
such surfaces.

INTRODUCTION

A need for additional directional control in VIOL test aircraft was
shown in reference 1, where the simplest yaw maneuvers in hovering flight
were reported to be difficult to perform. It became apparent, during the
course of a tilt-wing flight program at Langley Research Center (ref. 2)
that there was a need for increased yaw control that would impose no undue
welght or power penalty to the aircraft. The aircraft's partial-span
ailerons, being the only control surfaces available, conveniently satis-
fied the immediaste need of augmenting existing sources of yaw control,
when the tilt-wing aircraft was in the hovering configuration.

Early theoretical work with other methods of VIOL yaw control sys-
tems may be found in references 3 and 4, Model force tests and free-
flight data of the stability and control for three tilt-wing models
involving the ailerons as a source of yaw control are reported in
references 5 to 7.



In this report, flight-test results are compared with predicted
yaw control values and flight characteristics are discussed In light
of future design considerations. A brief analytical presentation (see
appendix) shows how full-span trailing-edge control surfaces can
increase the yaw control moment.

SYMBOLS

CLA 1lif't coefficient for wing with aileron deflected

D rotor diameter, ft

W alreraft weight, 1b

W disk loading, 1b/sq ft (psf)

Iy, yaw moment of inertia, slug-ft2

iy wing angle, deg

Lp 1ift of wing perpendicular to rotor slipstream due to
deflected aileron, 1b

Lg 1ift of wing perpendicular to rotor slipstream due to
deflected tralling-edge control surface, 1b

Mo control mement, ft-1b

P power, horsepower

S wetted wing area, sq ft

v velocity, knots

vy downwash velocity, ft/sec

o) rudder pedal displacement, in.

Q rotor rotational speed, radians/sec

o sea-level density, slug/cu ft



APPARATUS AND TEST PROCEDURE

Aircraft

Aircraft characteristics.- The VZ-2 test alrcraft is a VIOL tilt-
wing, twin rotor machine. A three-view drawing of the alrcraft is shown
in figure 1 and %ts physical characteristics are listed in table I. Fig-
ure 2 is a photograph of the aircraft in transition flight. The air-
craft was flown during all tests with drooped leading edges on the wing
as described in reference 2. Power 1s supplied by an 850-horsepower gas
turbine engine and is controlled by the pilot through the collective
pitch lever. Maximum usable horsepower has been 1limited by shafting
and gearing to 650 horsepower. Instrumentation is the same as that
described in reference 2.

Control system characteristics.- The aircraft, as tested in this
investigation, utilizes separate combinations of control in the hovering,
transition, and cruise regions of flight: (1) Yaw control, which is of
primary interest, is obtained in hovering and transition through the
use of a fan located vertically in the aft end of the alrecraft and the
ailerons which are connected into the directional control system. As
forward speed is increased, the alleron deflections used for directional
control are phased out, and yawing moments are obtained solely from the
rudder and tall fan. Provisions were made for the pilot to vary the
blade pitch of the yaw tail fan; thus, he could regulate the total thrust.
(2) Pitch control is obtained in hovering by varying the thrust of a fan
located in the aft end of the aircraft in the plane of the horizontal
tail. As airspeed is increased, the tail fan is phased out and the all-
movable horizontal tail provides the only pitch control. (3) Roll control
is obtained by differentially operating the collective pitch of the main
rotors during hovering and transition. As the wing angle is decreased
and airspeed is increased this control is phased out and roll control is
provided by the aileron.

Figure 3(a) shows the programing of the aileron deflection for full
lateral stick deflection as a function of wing angle, and figure j(b)
shows the aileron deflection for full rudder pedal deflection as a func-
tion of wing angle.

Figure 4 shows a sectional view of the wing and aileron. Maximum
aileron positions are denoted by the dashed lines radiating from the
hinge point.



Test Conditions

The flight investigation consisted of three test maneuvers: (1) step
yaw control inputs made in the hovering configuration to obtain the direc-
tional control moment based on the resulting initial yawing accelerations;
(2) step yaw inputs made in several transition flight configurations to
evaluate possible coupling between roll and yaw; (3) steadily increasing
sideslip angles performed in transition flight to determine the effective-
ness of the allerons in sideslip.

RESULTS AND DISCUSSION

Flight-Test Results

Hovering step inputs.- Several step pedal inputs were made during
hovering flight while the maximum available yaw tail-fan control was
varied from O to 100 percent. Figure 5 shows a typical time history,
in the hovering configuration, of a step pedal input and the resulting
yvawing angular velocity. A compilation of the initial accelerations
taken from these time histories was used to obtain control power data
which is shown in figure 6 as a function of the variation of total
availeble tail-fan control. Figure 6 indicates that, when the tail
fan is producing no thrust (0 percent fan control), the contribution
of the ailerons is approximately equal to one-half the moment produced
by full thrust from the yaw tail fan (100 percent fan control). Pilots'
comments indicated that the VZ-2 tail fan alone gives inadequate yaw
control in hovering. Combined with the ailerons, pilots commented that
the yaw control was improved but still not satisfactory. The more favor-
able pilot opinion mey have been based on the change in characteristics
of the total modified yaw control system about the neutral point. This
is due to the linear aileron yawing moments superimposed on the nonlinear
tail-fan thrust (ref. 2; fig. 14).

It is of interest to note that this configuration, with maximum
available yaw control, failed to achieve an angular displacement for
1 second of 6.7° for l-inch pedal deflection laid down as minimum
requirements in reference 8 (by using fig. 5 and assuming a linear
relationship between pedal deflection and yaw displacement, the yaw
angular displacement for l-inch pedal deflection was 2.8° in 1 second).

The majority of hovering tests were conducted at heights of approx-
imately 10 feet and therefore do not reflect the loss of control effec-
tiveness which has been experienced in ground effect in various wind-
tunnel tests. No specific tests were performed in ground effect but
pilots report that they have felt no marked deterioration of yaw con-
trol while in ground effect.



Directional step inputs in a transition flight configuration.- Step
yaw inputs have been documented at a wing angle of 559 and yaw tail-fan
control of O percent and 42 percent. Figure T shows typical time-history
traces of a directional step displacement and the resulting yaw and roll
angular velocities for the two yaw fan control inputs. From figure 7(a),
as is to be expected, a right pedal displacement is shown to produce &
slight left roll. Coupling caused by the ailerons was readily overpowered
by the strong dihedral effect approximately 0.5 second after the input was
initiated and was barely noticeable to the pilots. Figure 7(b) shows the
same type of maneuver with the tail-fan control reduced from 42 percent
to O percent. As is expected, the decreased tail-fan control requires
that larger pedal deflections be used to produce the same yawing veloc-
ity; therefore, for the given maneuver, coupling is increased.

Pilots report that the coupling of the rolling velocities due to a
rudder pedal step input with this particular aileron configuration was
negligible in most of the flight regions tested and it was not objec-
tionable. Although coupling proved not to be a problem with this alr-
_craft, this effect may be of considerable magnitude on future machines
with different physical characteristics.

Static lateral directional stability characteristics in a transi-
tion configuration.- Figure 8 shows steady-state plots of the lateral
stick and rudder pedal positions as a function of sideslip angle for a
wing angle of 40° and an airspeed of 4O knots. The lateral directional
characteristics for the aircraft as previously measured in reference 1
without the modified aileron system are also plotted in figure 8(a) for
comparison. Figure 8(b) shows the sideslip angle as a function of pedal
position with L2-percent tail-fan control. In figure 8(c), yawing
moments obtained solely from the ailerons are no longer sufficient to
overpower the aircraft's directional moments at sideslip angles greater
than approximately 300. The vertical slope shown in figure 8(c) at
large sideslip angles suggests a need for caution when designing wing
control surfaces to be used as the sole source of moment. It could
represent a potential inability of the control surfaces to provide
adequate control for the large sideslip angles which may be required
at low speeds. Present tests did not permit the isolation of the
gsource of this steep rise.

Pilot comments substantiate the data shown in figure 8 where the
use of ailerons as a yaw control device did not cause appreciable -
changes in control with respect to the static directional stability -

characteristics or to lateral directional disturbances.

Discussion

Yaw control effectiveness provided by the ailerons has been reason-
ably well predicted by simple momentum considerations as is shown in the



appendix of this report. Correlation was obtained between the flight
data and the analysis shown in the appendix by estimating wing 1lift
coefficients with and without ailerons deflected, and by assuming that
each wing provided an equal share of the yawing couple and that the
rotor slipstream was constant across the downwash cross section. Based
on this correlation, an alternate configuration was analyzed. An
enlarged full-span control surface was used in place of the partial
span aileron. A 90-percent increase in yawing moment is noted for this
case over the configuration with the partial-span ailerons used in the
yaw control system. Although the simplified analysis showed good cor-
relation in this case, substantiation for other combinations of design
parameters will be required before the analysis can be used with con=-
fidence for accurate predictions rather than for prelimlnary estimates.

The application of econtrol surfaces on the wing as a possible
source of yawing moment depends on such things as the choice of the
airfoil-control surface comblnation, size of control surfaces, and
control surface moment arm. It appears that, if these design param-
eters are properly used, the wing control surfaces would be worthy of
consideration in augmenting future VIOL alrcraft yaw control systems.

SUMMARY OF RESULTS

The following statements summarize the results obtained with the
aileron yaw control system in the conflguration available on the VZ-2
tilt-wing aircraft:

1. Flight tests using partial-span ailerons as a means of providing
yaw control moments in the hovering configuration showed that the ailerons
provided approximately one-half the amount of control power as that pro-
vided by the yaw tail fan. Both devices combined produced a desirable
increase in yawlng moment but still not an acceptable amount.

2. Rolling motions of the aircraft due to directional inputs at
the test flight conditions with the ailerons did not produce objection-
able handling qualities. However, caution should be used when improved
control surfaces are used because increased effectiveness might cause
undesirable coupling.

5. The ailerons as the sole source of directional control did not
produce enough yawing moment at high sideslip angles to overpower the
aircraft's directional moments. High sideslip angles can te encountered
at the lower speeds; hence, if this type of control were used as the sole
source for yawing moments, unsatisfactory control characteristics at low
speeds might result.



4. The hovering yaw control obtained through the use of ailerons
is shown to be predictable in this case and of useful magnitude. It
appears that properly designed control surfaces augmenting a yaw con-
trol system, such as a yaw tail fan, could be used to reduce the power

required and size needed by such a system.

Langley Research Center,
National Aeronautics and Space Administration,
Lengley Station, Hampton, Va., May 10, 1962.
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APPENDIX

CORRELATION OF FLIGHT DATA WITH THEORY AND EFFECT
OF CONFIGURATION MODIFICATION

Theoretical calculations showing correlation with flight data and
how a modification to the basic configuration can produce Increased
yawing control moments are presented in this appendix. The basic con-
figuration 1s presented in the following sketch:

’ D = 9.50°'
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Sketch (a).- Basic configuration.

For the calculations for the basic configuration, the following values

are assumed:
Q= 1,416 rpm

D =9.50 ft



W = 3,200 1b
CLA = 1.90
5 = 6.0 in.

The induced velocity is

vy = \/;l; = 69 ft/sec

The 1ift produced by wing and aileron is

LA=

-

2
pvy SCLA

= £(0.00238)(69)2(%.75)(2.65)(1.90) = 135

NI

Based on these values the control moment is

Mo = 2(9.16)(135) = 2,475 ft-1b

M _ 2,75 = 0.103 radiigfsece

8Iz  (6)(3,985)

From flight data (fig. 6) the control moment is

M« 450 radian/sec?®
3?835 = 0,113 —=20/82C

B3Iy in.

Based on the good agreement in this case of the theoretical calculations
and flight data, a variation of the basic configuration (see sketch (b))
is evaluated by the same theoretical analysis to find the increase that
can be made in the ratios initial acceleration and pedal displacement.
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The 1ift produced by deflected surface is
Lg = %(0.00238)(69)2(1.90)(h.75)(6.3) = 322
The control moment 1is :
M = 2(322)(7.33) = 4,620 ft-1b

- h!620 = 0.197 radi:n(sec2
n.

Yo
I8 (6)(3,985)

The percent increase over the basic configuration is

0.197 - 0.103 _
5,103 0.915

A/JC



11

REFERENCES

. Reeder, John P.: Handling Qualities Experience With Several VTOL
Research Aircraft. NASA TN D-735, 1961.

. Pegg, Robert J.: Summary of Flight-Test Results of the VZ-2 Tilt-
Wing Aircraft. NASA TN D-989, 1962.

. Gevarter, W.: Propelloplane - Stability and Control Report. Rep.
No. 141.7, Hiller Helicopters, Apr. 13, 1956.

. Engineering Division: Summary Report - Jet Reaction Controls for
VIO Aircraft. Rep. No. 3852-1 (Contract No. NOa(s)-10035), Ryan
Aero. Co., Oct. 1, 1955.

. Tostl, Louls P.: Force-Test Investigation of the Stability and Con-

trol Characteristics of a 1/8-Scale Model of a Tilt-Wing Vertical-
Take-Off-and-Landing Airplane. NASA TN D-Lk, 1960.

. Newsom, William A., Jr., and Tostl, Louls P.: Force-Test Investiga-
tion of the Stability and Control Characteristics of a 1/4-Scale
Model of a Tilt-Wing Vertical-Take-Off-and-Landing Aircraft. NASA
MEMO 11-3-58L, 1959.

. Lovell, Powell M., Jr., and Parlett, Lysle P.: Hovering-Flight Tests
of a Model of a Transport Vertical-Take-Off Airplane With Tilting
Wing and Propellers. NACA TN 3630, 1956.

. Anon.: Helicopter Flying and Ground Handling Qualities; General Speci-
fication for. Military Specification MIL-H-8501A, Jan. 11, 1961,



TABIE I.- PHYSICAL CHARAC’TERISTICS OF THE VZ-2 ATRCRAFT

Rotors:
Diameter, £t . .« . o 4 ¢ v ¢ v v 0 s v s s e s e e s v e s e s e e e e e e 9.5
Blade cherd, in. . . P v E e s a e e w v e v w vt s e e e e 13
Bla.detwist(linear,roottotip),deg........................ 19.2
Airfell section . v . ¢« ¢ v ¢ ¢ + v v v ¢ 4 « 4w v+« + » « v +» + NACA 0009 with 0.5-inch cusp
Blade taper ratdo . .+ « ¢ « 4 v v v 0 v 4 e vt e a e s s s e e e e e ey e e ey 1
Solidity, BE/MR + ¢ 4 ¢ v v e v e e s e e e s e e e e s e s e e s s s e ... 0,218
Distance between propeller axes, P + v v v v v & ¢+ © s s 4 v v s wow s e e 0. o« 14,67
Differential pitch, @6 + v + v v v v v v s v v v s e e e e s e e e e e e e s t2
Normal operating speed, TDM « + « + &+ + o « s & s o« s v o o o o« s o s s o v v« 0 x v« 1,416

Wing:
Span (excluding t1ps), £t + v v v v v & 4 v % = 4 s 2 s 1 s e e e e e e e r .. 24.88
CROTA, PL = o « o v v & & o m v m et e e et et et e e e e e e TS
AIrfoll 8eCtiOn « & ¢ v v ¢ 4 s o s s o+ v+ 4 e v s s s s s v e w e v s s e s« « NACA WU15
Taper TABEIO + o v v ¢ v v v v s i e e s h e s e e e e s e e e e e e e e e e e e e e e 1
Sweep, d88 + 5« s s s s s s v v v om v v v v v v s s e e s e s a s e ey e e Qo
DINEAral, B +« + + = « = « v v+ = 1 v 0 o 8 o b 1 e v e e e e e e e o
Plvot, percent chord. « = v v « + v o 4 s o 4 = s m s e n s s x s w s e s e e 3.6
Allerons: o
Chord, L « + «v ¢ v ¢ v ¢ v & v 0 4 v & 5 & s & s s s s 8 v v x oy e e e e e 125
Span, £t . . . . G e v e e e e s e e e e e e e e e e e e e 6
Tilt range (referenced to upper longeron), deE .+ + + « + & s x s s s 4 o 0 s .. 9to 85

Vertical tail:
Height, ft . .. . . . - IR 1
Chox-d,mea.ngecmetric,ft...............................5.90
Sweep at leading edge, 888 . - v ¢ ¢ v v v v v v ot e s v e v e e s s n e s ey 28
Basic eirfotl section . v v « v 4 o v ¢« 4 ¢« v v v s v« v v a e = s s+ .« .+ » . NACA D012
Rudder:

Chord, In: v v 4 4 ¢ s s & s s 4 s ¢« 1 ¢ ¢ 4 ¢ o o s o s s o s s = ¢ s s oo v e s 21
Span, IN. v v ¢ ¢ 4 s s v s v e v s e s w s e s e s v e s e e e e . 58

Forizontal tail:

Span (leBs t1P8), P = = v 4 v 4 4 c 4 v kv e v s e n e e e e s e s e e e . O,
Bweep, dEB « « 4 4 v v 4 v r e s v r v r e v e e e e e v e r e s v v v e e e
Taper TALIO + & v v v v 0 v vty s s e r v v v e e s e s e ke s e e s e e e e 1
Alrfoll section + + v + « v v 4 4 o 4 s v v 2 s o 5 5 s » = 3 « + « 4 s s ¢« s « « » NACA OO12
Dihedral, deg . . T T 4]
length (distance from wmg pivot to leading edge of tail), ft . . + + » « + « + . + . » 10.475
Hinge point (distance from leading edge), IM.  « v v v v o« + + + o + ¢ &+ & o & s » = 8.3

Control fans:

Diameter (both £ans), £ + v + « 4 + v & s & s 5 s v 5 5 5 1 4 4 r e e ... 2,00
Moment arm sbout wing pivot (both fans), £ . « » + v v v v v v & v 4 v v v e v e . .. 12,35
Rumber of D1BAEE + v « v o v s o v s » s o # s 5 « 1 s 3 s 4 s e e e e ey L
Speed, YDM v « v o = v v v 2+ s v s v e v s e e n e sy s e e e s 5,850
Puselage length « & ¢« « v ¢ v v v v v+ 4 4 8 s e e s n s n e e e s e s e . . . 26 feet 5 inches
Engine . . . ¢« & 2 4+ v 4 v v v v v x r v v v v e v s e s s e s s s s s s s+ s Lycomlng T 53
Weight ap flown with ejection geat, 1b . . o v+ v v ¢ = v v « v v v ¢« ¢ v+« v« + » + .« 3,500
Center of gravity {for 9° wing incidence), percent mean merodynamic chord . . v + + + « & 33.5

Center of gravity (for 85° wing incidence), feet forward of pivot point,
measured along longitudinal axIe . . &+ ¢« & ¢ v & ¢ 4 4 b 4 4 e v s s e e s e e a s s . 0,135

Adreraft wedght, 1b o o v v v v 4 v v v b 0 s e s s e e e e e e e e e e s s 3,432 3,20l

Inertias:

TX ¢+ 2 5 o s s s s v 6 v s v v s v v ow vy v e w e s s s o« . 1,634 1,560
B N T T R T R L T T T R T T PR~ 8 J 2,899
Tz ¢ v v s o s s s e e e e e e s e e e e s e e s e e s e w s s w e s . 3,988 3,985

Total control travels:
Lateral stick, In. . . ¢ & .« v 0 h e e e e e e e e e e e e e e e e e e e e . 9%

Longitudinal stick, M.  « « ¢+ v 0 4 e e e e e e e e e e e e e e e e e e e 11%
Pedal, In. + ¢ « v v ¢ ¢ vt s v e s e e e s e e x e n s e e s e e e e e e e s e
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Filgure 2.- Test aircraft in transition flight.
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Figure 3.- Alleron programing as a function of wing angle.
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P = 550 horsepower.
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